
Unit Testing
Principles, Practices, and Patterns

Good
Unit Tests

Protection

R
esistance

Fast feedback

Maintability

London School Classical School

A unit is

Test doubles
FOR

A class A class or set of classes
Behavior

All but immutable
dependencies

Shared dependencies

System Under
Test

SMTP server

Database

Send
 email

Input

Production code

Output

Output
verification

Assumes there are no side effects and the only result of the SUT is
the value it returns to the caller -> functional

Input

Production code

State
verification

State
verification

Input

Production code

Mocks

3
St

yl
es

 o
f

te
st

s

Enable sustainable growth of the
software project

Goal of Unit testing

#sharingiscaring by Yoan THIRION @yot88

by Vladimir Khorikov

Quickly slows down
Hard to make any progress

Project without tests
Constant cleaning and refactoring
Tests act as a safety net

Fight entropy

A tool that provides insurance
against a vast majority of regressions

What makes a successful test suite?

Integrated into the development cycle
Targets most important parts of the code base
Provides maximum value

With minimum maintenance costs

Not all tests are created equal

Bad tests : raise false alarms

Unit tests are vulnerable to bugs
Require maintenance

Tests are code too
View them as part of your code base that aims at solving a
particular problem: ensuring the application’s correctness

What is a Unit Test ?Verifies a small piece of code (also known as a unit)
Does it quickly
And does it in an isolated manner.

Automated test that :

A regression = a software bug
The larger the code base -> the more exposure to potential bugs
Tests should reveal those regressions

Protection against regressions

Resistance to refactoring
The degree to which a test can sustain a refactoring of the underlying application
code without turning red (failing)

Have in the suite
Run them -> shorten the feedback loop

Fast feedback
The more of them you can :

How hard it is to understand the test
How hard it is to run the test

Maintainability (Maintenance costs)

Test class name
Class-container for a cohesive set of tests

Don’t follow a rigid naming policy
Describe the scenario to a non-programmer
Use sentences

Name of the test

Arrange / Given
Bring the system under test (SUT) +

dependencies to a desired state

Call method / function on the SUT
Pass the prepared dependencies

Act / When
Invoke the behavior :

The return value
The final state of the SUT and its collaborators
Or the methods the SUT called on collaborators

Assert / Then
Verify the outcome :

Test doubles

Mock

Stub

Get Data

Help to emulate and examine out-coming interactions

Help to emulate and examine in-coming interactions

Feed an input to the system under test (SUT)
Check the output it produces

Output-based State-based
Verify the final state of the system

after an operation is complete

The SUT itself
One of its collaborators
Or an out-of-process dependency (db / fs)

"State” can refer to the state of :

Communication-based
Verify that the SUT calls
its collaborators correctly

Tests substitute collaborators with mocks

Classical preference London preferenceBoth school use it

Resistance to
refactoring

Maintanability
costs

4 Types of Code

Complexity
Defined by the number of decision-making

(cyclomatic complexity for example)

Domain significance
How significant the code is for the problem

domain of your project

Number of collaborators
Code with many collaborators is expensive to test

Domain model
Algorithms

Parameter less constructors
One-line properties

Trivial Code
No complex or business critical
Coordinates the work of other components

Controllers

Don’t delegate complex work anywhere
Do everything themselves

Overcomplicated code
Ex : fat controllers

Unit test this gives the best
return on investment

Algorithms
Controllers

Refactor it by splitting into :

Integration Tests

Anatomy

https://www.linkedin.com/in/yoanthirion/
https://www.linkedin.com/in/yoanthirion/
https://twitter.com/yot88
https://twitter.com/vkhorikov

