= Unit testing ¢

Principles, Practices, and Patterns by Vladimir Khotikov
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Goal of Unit testing

software project

Project without tests

* Quickly slows down

Fight entropy
e Constant cleaning and refactoring

* Hard to make any progress e Tests act as a safety net

What makes a successful test suite? Not all tests are created equal

e Integrated into the development cycle ' Bad tests : raise false alarms
e Targets most important parts of the code base
e Provides maximum value e Unit tests are vulnerable to bugs

o With minimum maintenance costs * Require maintenance

Tests are code too
View them as part of your code base that aims at solving a

A tool that provides insurance
against a vast majority of regressions

particular problem: ensuring the application’ s correctness

Automated test that :

o Verifies a small piece of code (also known as a unit)

what is a Unit Test ?

e Does it quickly
« And does it in an iscfated manner.

Protection against regressions

* A regression = a software bug

* The larger the code base -) the more exposure to potential bugs

Good
Unit Tests

* Tests should reveal those regressions
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* Have in the suite
) ) ﬁ ¢ Run them -) shorten the feedback loop

Maintability
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Anatomy

Maintainability (Maintenance costs)

* How hard it is to understand the test
¢ How hard it is to run the test
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London School

Test class name

Class-container for a cohesive set of tests

Classical School

A unit is e A class or set of classes

A class

ceeeresfecenes

e Behavior

Name of the test

* Don’ t follow a rigid naming policy

e ececcsccsccssecsoesccsscsscssccssesscsscassesee
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{ Test doubles * All but immutable Shared dependencies * Describe the scenario to a non-programmer
. . d d . * Use sentences
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: : - Arrange / Given

Bring the system under test (SUT) +
dependencies to a desired state

Test doubles
Act / When

Invoke the behavior :

¢ Call method / function on the SUT
* Pass the prepared dependencies
SMTP server

Assert / Then

Verify the outcome :
¢ The return value
* The final state of the SUT and its collaborators
* Or the methods the SUT called on collaborators

Help to emulate and examine out-coming interactions

Mock
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Stub

Help to emulate and examine in-coming interactions

System Under
Test

Output-based

¢ Feed an input to the system under test (SUT)
* Check the output it produces
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Production code

J Styles of tests

Assumes there are no side effects and the only result of the SUT is
the value it returns to the caller =) functional

Both school use it
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Resistance to
refactoring

Maintanability :
costs ‘.‘

Unit test this gives the best
return on investment

Complexity Domain model

Defined by the number of decision-making
(cyclomatic complexity for example)

Algorithms

Domain significance
How significant the code is for the problem
domain of your project

Trivial Code
¢ Parameter less constructors
¢ One-line properties

State-based

Verify the final state of the system
after an operation is complete

State

. T verification
Input / %“ o—— State
\ ® /, verification

Production code

“"State” can refer to the state of :

* The SUT itself

* One of its collaborators

* Or an out-of-process dependency (db / fs)

Classical preference

Overcomplicated code

: fat controllers

Don’ t delegate complex work anywhere
Do everything themselves

Controllers

* No complex or business critical
* Coordinates the work of other components
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Communication—based

Verify that the SUT calls
its collaborators correctly
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Production code

Tests substitute collaborators with mocks

London preference

4 Types of Code

Refactor it by splitting into
* Algorithms
¢ Controllers

Integration Tests

Number of collaborators

Code with many collaborators is expensive to test
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