= Unit testing ¢

Principles, Practices, and Patterns by Vladimir Khotikov

Enable of the

Goal of Unit testing

software project

Project without tests

* Quickly slows down

Fight entropy
e Constant cleaning and refactoring

* Hard to make any progress e Tests act as a safety net

What makes a successful test suite? Not all tests are created equal

e Integrated into the development cycle ' Bad tests : raise false alarms
e Targets most important parts of the code base
e Provides maximum value e Unit tests are vulnerable to bugs

o With minimum maintenance costs * Require maintenance

Tests are code too
View them as part of your code base that aims at solving a

A tool that provides insurance
against a vast majority of regressions

particular problem: ensuring the application’ s correctness

Automated test that :

o Verifies a small piece of code (also known as a unit)

what is a Unit Test ?

e Does it quickly
« And does it in an iscfated manner.

Protection against regressions

* A regression = a software bug

* The larger the code base -) the more exposure to potential bugs

Good
Unit Tests

* Tests should reveal those regressions

|
) 4 ) —7 7 Resistance to refactoring
-? g a The degree to which a test can sustain a refactoring of the underlying application
g’_ 2‘_ -+ code without turning red (failing)
® w ®
o g o
2 2 &
3 fy a Fast feedback
=
— The more of them you can :

* Have in the suite
) ) ﬁ ¢ Run them -) shorten the feedback loop

Maintability

|

Anatomy

Maintainability (Maintenance costs)

* How hard it is to understand the test
¢ How hard it is to run the test

@ 0000 00000000000000000000000000000000000000000000900000000000000000000000000000000m
.

London School

Test class name

Class-container for a cohesive set of tests

Classical School

A unit is e A class or set of classes

A class

ceeeresfecenes

e Behavior

Name of the test

* Don’ t follow a rigid naming policy

e ececcsccsccssecsoesccsscsscssccssesscsscassesee
. .

®seecsccccccccccloccccccetocccee
eeccccscscsccccccloccccccehoccce

{ Test doubles * All but immutable Shared dependencies * Describe the scenario to a non-programmer
. . d d . * Use sentences

: FOR : ependencies

. E = H

: . — .

: : - Arrange / Given

Bring the system under test (SUT) +
dependencies to a desired state

Test doubles
Act / When

Invoke the behavior :

¢ Call method / function on the SUT
* Pass the prepared dependencies
SMTP server

Assert / Then

Verify the outcome :
¢ The return value
* The final state of the SUT and its collaborators
* Or the methods the SUT called on collaborators

Help to emulate and examine out-coming interactions

Mock

Sa“a 6“\0“ \
Get Da.
t
“ Database

Stub

Help to emulate and examine in-coming interactions

System Under
Test

Output-based

¢ Feed an input to the system under test (SUT)
* Check the output it produces

~ .><' ~N
Input \ . . /

Production code

J Styles of tests

Assumes there are no side effects and the only result of the SUT is
the value it returns to the caller =) functional

Both school use it

BT P D D T P S T P T L T TP P PP PP PP PP PP PP PE PP PP

Resistance to
refactoring

Maintanability :
costs ‘.‘

Unit test this gives the best
return on investment

Complexity Domain model

Defined by the number of decision-making
(cyclomatic complexity for example)

Algorithms

Domain significance
How significant the code is for the problem
domain of your project

Trivial Code
¢ Parameter less constructors
¢ One-line properties

State-based

Verify the final state of the system
after an operation is complete

State

. T verification
Input / %“ o—— State
\ ® /, verification

Production code

“"State” can refer to the state of :

* The SUT itself

* One of its collaborators

* Or an out-of-process dependency (db / fs)

Classical preference

Overcomplicated code

: fat controllers

Don’ t delegate complex work anywhere
Do everything themselves

Controllers

* No complex or business critical
* Coordinates the work of other components

eeesecsscsscsessrssesscecscsscsscssssrcsesscssesae

Communication—based

Verify that the SUT calls
its collaborators correctly

o o
X

Production code

Tests substitute collaborators with mocks

London preference

4 Types of Code

Refactor it by splitting into
* Algorithms
¢ Controllers

Integration Tests

Number of collaborators

Code with many collaborators is expensive to test



https://www.linkedin.com/in/yoanthirion/
https://www.linkedin.com/in/yoanthirion/
https://twitter.com/yot88
https://twitter.com/vkhorikov

